2 resultados para Arthritis, Reactive

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular (CV) disease is increased in patients with chronic inflammatory disease, including rheumatoid arthritis (RA). Furthermore it has become clear at a pathophysiological level, that atherosclerosis has striking similarities with autoimmune disease. This realization has come at a time of paradigm shift in how rheumatologists manage RA, with the availability of biological agents targeting key inflammatory cytokines. This review will focus on the possible causes of increased vascular disease in RA, including the role of traditional CV risk factors. Mechanisms potentially at play, such as C-reactive protein (CRP), altered coagulation, and cyclooxygenase (COX) -2 inhibitors will be covered in brief. The Receptor for Advanced Glycation End Products (RAGE) has been identified as a candidate molecule influencing response to ongoing inflammation and autoimmunity. There will be a focus on the role of RAGE in CV disease and RA. As has been the case with many novel molecules, functional polymorphisms are thought to alter disease expression and assist us in coming to terms with the biological activities of the parent molecule. The review will conclude with a discussion of the potential role of the RAGE Glycine 82 Serine polymorphism